
www.manaraa.com

University of Colorado, Boulder
CU Scholar
Aerospace Engineering Sciences Graduate Theses &
Dissertations Aerospace Engineering Sciences

Spring 1-1-2019

Standard and Inception-Based Encoder-Decoder
Neural Networks for Predicting the Solution
Convergence of Design Optimization Algorithms
Nathanial James O'Neill
University of Colorado at Boulder, naon3943@colorado.edu

Follow this and additional works at: https://scholar.colorado.edu/asen_gradetds

Part of the Aerospace Engineering Commons, Computer Sciences Commons, and the
Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Aerospace Engineering Sciences at CU Scholar. It has been accepted for inclusion in Aerospace
Engineering Sciences Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact
cuscholaradmin@colorado.edu.

Recommended Citation
O'Neill, Nathanial James, "Standard and Inception-Based Encoder-Decoder Neural Networks for Predicting the Solution Convergence
of Design Optimization Algorithms" (2019). Aerospace Engineering Sciences Graduate Theses & Dissertations. 247.
https://scholar.colorado.edu/asen_gradetds/247

https://scholar.colorado.edu?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/asen_gradetds?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/asen_gradetds?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/asen?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/asen_gradetds?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/asen_gradetds/247?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cuscholaradmin@colorado.edu

www.manaraa.com

Standard and Inception-based Encoder-Decoder Neural

Networks for Predicting the Solution Convergence of

Design Optimization Algorithms

by

Nathanial James O’Neill

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Aerospace Engineering Sciences

2019

www.manaraa.com

This thesis entitled:
Standard and Inception-based Encoder-Decoder Neural Networks for Predicting the Solution

Convergence of Design Optimization Algorithms
written by Nathanial James O’Neill

has been approved for the Department of Aerospace Engineering Sciences

Prof. Kurt Maute

Prof. Alireza Doostan

Prof. John Evans

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

www.manaraa.com

iii

O’Neill, Nathanial James (M.S., Aerospace Engineering Sciences)

Standard and Inception-based Encoder-Decoder Neural Networks for Predicting the Solution Con-

vergence of Design Optimization Algorithms

Thesis directed by Prof. Kurt Maute

The goal of this work is to investigate the ways in which the capabilities of machine learning

algorithms, specifically those of neural networks, can be leveraged to enhance the performance of

design optimization algorithms – specifically those of topology optimization.

A recent boom of interest in design optimization has occurred, coinciding with the arrival

and development of advanced manufacturing techniques (such as 3D printing and additive manu-

facturing) which are compatible with the designs generated by these algorithms. Neural networks

have seen an even larger boom in interest and development for their ability to act as “universal

function generators;” in other words, for their ability to learn highly non-linear functions that ap-

proximate the behavior of extremely complex systems. Merging design optimization algorithms

with the capabilities of neural networks poses several distinct possibilities: drastically reducing op-

timization time by predicting solution convergence; up-scaling solution resolution using Generative

Adversarial Networks (GAN’s); predicting solutions with no iteration; predicting and recognizing

features in the optimized solution, just to name a few.

In this thesis, three neural network architectures are tested for their ability to act as solution

convergence predictors of a density-based topology optimization solver. The problem is posed as an

image segmentation problem, and the neural networks are all trained on a 40,000 example training

set with each example containing 100 iterations from the open source optimization solver Topy (a

data set created by Sosnovik et al [25]). The third network developed and tested is a novel hybrid

network – an inception encoder-decoder network – which is found to outperform the other networks

on the prediction task at hand.

www.manaraa.com

Dedication

I would like to dedicate this thesis to all the individuals who helped and supported me –

through the academics and through the life situations – to make this thesis possible.

www.manaraa.com

v

Acknowledgements

I would like to acknowledge Prof. Kurt Maute for his support throughout this process. His

knowledge and guidance were crucial to the formation and execution of this research. I would also

like to thank Prof. John Evans for his guidance throughout the years. Having taken four of his

classes, there is no professor responsible for more of my undergraduate and graduate work load, and

no professor responsible for more of my learning and growth as a student and engineer.

www.manaraa.com

vi

Contents

Chapter

1 Introduction 1

1.1 Overview . 1

1.1.1 Topology Optimization and Manufacturing 1

1.1.2 Machine Learning and Neural Networks . 2

1.2 Motivation: Leveraging Neural Networks for Design Optimization 5

1.3 Accomplishments . 8

1.4 Thesis Structure . 8

2 Theoretical Background 9

2.1 Topology Optimization . 9

2.1.1 Geometry Description . 10

2.1.2 SIMP Density Method . 10

2.1.3 Optimization Algorithms . 12

2.1.4 Sensitivity Analysis . 20

2.2 Artificial Neural Networks . 22

2.2.1 Convolutional Neural Networks (ConvNets) 32

3 Methodology 41

3.1 Experiment 1: Sosnovik-Oseledets Network Reproduction 41

3.1.1 Overview . 41

www.manaraa.com

vii

3.1.2 Architecture . 42

3.1.3 Dataset . 43

3.1.4 Training Parameters . 44

3.2 Experiment 2: Sosnovik et al Network with Modified Input 44

3.2.1 Overview . 44

3.2.2 Architecture . 44

3.2.3 Dataset . 45

3.2.4 Training Parameters . 46

3.3 Experiment 3: Inception-Based Encoder-Decoder Network 46

3.3.1 Overview . 46

3.3.2 Architecture . 46

3.3.3 Dataset . 48

3.3.4 Training Parameters . 49

4 Results and Discussion 50

4.1 Experiment 1: Sosnovik et al Network Reproduction 50

4.1.1 Training Results . 50

4.1.2 Predictions . 52

4.2 Experiment 2: Sosnovik et al Network with Modified Input 53

4.2.1 Training Results . 53

4.2.2 Predictions . 55

4.3 Experiment 3: Inception Encoder-Decoder Network 56

4.3.1 Training Results . 56

4.3.2 Predictions . 58

4.4 Experiment Comparison . 59

4.5 Discussion of Results . 63

www.manaraa.com

viii

5 Conclusions and Future Work 65

5.1 Summary of Completed Work . 65

5.2 Unanswered Questions and Future Research . 66

Bibliography 68

www.manaraa.com

ix

Tables

Table

3.1 Experiment 1 Network Training Parameters . 44

3.2 Experiment 2 Network Training Parameters . 46

3.3 Experiment 3 Network Training Parameters . 49

www.manaraa.com

x

Figures

Figure

1.1 Perceptron Model, adapted from [22] . 4

1.2 High-Level Daigram of a Generative Adversarial Network, adopted from [1] 6

2.1 Design domain for generation of data set. 10

2.2 Beta power law material interpolation scheme . 12

2.3 High level description of the functioning of a neuron. 28

2.4 High level description of a mathematical neuron, the “perceptron,” with hθ repre-

senting the hypothesis, denoted ŷ elsewhere in this thesis, and g() representing the

sigmoid or logistic function. 28

2.5 Standard Artificial Neural network architecture, a multi-layer “perceptron”, with

ŷ(Θ) representing the hypothesis of the network. 29

2.6 Matrix representation of pixel brightness values, which serve as the input to a con-

volution layer. 33

2.7 Input matrix convolution with filter of size 3x3. 33

2.8 First convolution step. 34

2.9 Second convolution step. 34

2.10 Completed Convolution. 35

2.11 High-level description of ConvNet algorithm, which seeks to find optimal values of

the filter matrix elements wij such that the ouput cost of the network is minimized. 36

www.manaraa.com

xi

2.12 LeNet-5 [3], a deep convolutional network for recognizing handwritten digits. 37

2.13 Encoder-Decoder Network Architecture for Road-Scene Feature Recognition [29] . . 39

2.14 Inception Module from the GoogleNet inception network, adapted from [28]. 40

3.1 Encoder-Decoder network from Sosnovik and Oseledets (2017) [25]. 43

3.2 Modified Encoder-Decoder network from Sosnovik and Oseledets (2017) [25]. 45

3.3 Hybrid Inception Encoder-Decoder network architecture. 47

3.4 Inception Module adopted from [27]. 48

4.1 Training and Validation Loss of the Encoder-Decoder Network of Sosnovik et al. . . 50

4.2 Training and Validation Binary Accuracy of the Encoder-Decoder Network of Sos-

novik et al. 51

4.3 Network Prediction vs. Optimization Solver Solution for given input. 52

4.4 Training and Validation Cross-Entropy Loss of the Encoder-Decoder Network of

Sosnovik et al. 53

4.5 Training and Validation Binary Accuracy of the Encoder-Decoder Network of Sos-

novik et al. 54

4.6 Network Prediction vs. Optimization Solver Solution for given input. 55

4.7 Training and Validation Cross-Entropy Loss of the Inception Encoder-Decoder Net-

work. 56

4.8 Training and Validation Binary Accuracy of the Inception Encoder-Decoder Network. 57

4.9 Network Prediction vs. Optimization Solver Solution for given input. 58

4.10 Training Accuracy Comparison. 59

4.11 Training Loss Comparison. 59

4.12 Validation Accuracy Comparison. 60

4.13 Validation Loss Comparison. 61

4.14 Test Accuracy Comparison. 62

www.manaraa.com

Chapter 1

Introduction

This chapter serves to provide the reader with an introduction to the major topics contained in

this thesis, including a brief overview of topology optimization and machine learning, the motivation

behind the research, the major results, and an overview of the structure of the contents.

1.1 Overview

1.1.1 Topology Optimization and Manufacturing

Human beings have long been fascinated, in areas ranging from art to engineering, by ge-

ometry and its relationship to function. There is something about the topic, on all levels, which

is thoroughly captivating to our minds. Psychologically, a geometry with a specific function or

meaning is a symbol. The cross of Christianity, the Christmas tree with a star on top, the swirling

serpents of the yin-yang – all of these are demonstrations of function or meaning being ascribed

to a geometry. This interest has likewise taken over our practice of engineering and design: each

geometry we design looks the way it does so it can perform a certain function. Multiple geometries,

however, are capable of performing a specific function, which then begs the question: how do we

find an optimal geometry for a specific function or set of functions?

Motivated by this question, we can define topology optimization, generally speaking, as the

numerical method for finding a geometry which optimally meets the constraints that specify its

function. These constraints come in the form of maximum and minimum mass, displacements,

temperatures, stresses, etc., as well as in manufacturability and manufacturing cost. While shape

www.manaraa.com

2

optimization methods have been researched since the mid-1970’s, topology optimization did not

make its debut until 1988 when Bendsoe and Kikuchi published their work describing an approach

for finding the structure with optimal material layout starting from a porous material distribution

[8]. Quickly following, the SIMP (Solid Isotropic Material with Penalization) Method was developed

as a means to alternatively solve the optimization problem as a density problem [6]. This method

utilizes the elemental densities as the optimization variable, and the intermediate density values

are heavily penalized to drive elemental density values to either 1 (full density) or 0 (no density).

Since the advent of design optimization algorithms, a fundamental problem has kept them

from widespread adoption and implementation: manufacturing practices. Since the first day a

human being used a tool to create something, we have been almost exclusively operating under

a single manufacturing paradigm which goes something like the following: we create something

by starting with more stuff than we need and then use a tool to remove what we don’t. This

manufacturing paradigm has allowed us to manufacture the world around us – but it is intensely

limited in the designs it is capable of producing for the sole reason that we must be able to physically

put a tool where we need to remove material. Certain methods of structural optimization stand

compatible with this manufacturing paradigm, but many of the incredible designs that modern

methods of design optimization are capable of creating stand far out of reach.

With the advent and development of 3D printing, additive manufacturing, and other advanced

manufacturing techniques, humanity has leapt into a new era of how we turn our ideas and designs

into reality. Manufacturing techniques are no longer constrained by the need to machine material

with a tool, meaning engineers are now able to manufacture the previously non-manufacturable

designs of optimization algorithms.

1.1.2 Machine Learning and Neural Networks

What is machine learning, on the highest level? In 1959, Arthur Samuel, who created the first

computer learning program to play checkers, provided the following definition:“[Machine learning

is] the field of study that gives computers the ability to learn without being explicitly programmed.”

www.manaraa.com

3

A better – or at least more specific – definition was offered by Tom Mitchell, who said, “A computer

is said to learn from experience E with respect to some task T and some performance measure P,

if its performance on T, as measured by P, improves with experience E.” Machine learning, then,

is the subset of the larger field of artificial intelligence which encompasses the algorithms which,

when employed, provide computers the ability to “learn.”

A few of the most commonly used machine learning algorithms are:

(1) k-Nearest Neighbors

(2) Support Vector Machines (SVM’s)

(3) Naive Bayes Classifiers

(4) Decision Trees

(5) Artificial Neural Networks (ANN’s)

Note that this thesis will focus exclusively on the algorithms and architectures which make up

Artificial Neural Networks.

Machine Learning algorithms can generally be divided into two main categories: supervised

learning and unsupervised learning. Supervised learning algorithms are provided an “answer key,”

so-to-speak, from which they are able to learn the relationships within the provided data set. Unsu-

pervised learning algorithms, conversely, are deployed in data sets to find certain kinds of answers

– they group like things together and find structure in data sets, for example. Supervised learning

can then broken down into two further sub-categories: regression and classification. Regression

problems seek to map input variables to some continuous function; in other words, regression prob-

lems are curve fitting problems. Classification problems seek to predict discrete outputs based on

a given input; in other words, they try to map input variables into discrete categories. The most

common unsupervised learning algorithms are:

(1) Clustering Algorithms: group subsets of a larger dataset by similarity based on certain

variables.

www.manaraa.com

4

(2) Dimensionality Reduction: project the given data into a space of fewer variables, which is

a powerful tool for both computational and visualization reasons. Primary Dimensionality

Reduction algorithm is PCA, or Principle Component Analysis.

(3) Outlier Detection: find data that doesn’t fit the expected trend.

The work in this thesis draws exclusively from supervised regression and classification algorithms,

which are the foundation of ANN’s.

Figure 1.1: Perceptron Model, adapted from [22]

The idea of fitting a line to a data set seems, on the surface, to be a relatively trivial

mathematical task. On a broader level, however, fitting a line to a curve is a specific instance

of the ability to find a pattern, which is a core feature of systems that learn. Problems arise,

mathematically, when the data set is sufficiently large and the curve we are trying to fit to it – the

so-called “hypothesis” – becomes highly non-linear. Such problems, when solved with conventional

algorithms, become enormously computationally expensive.

In the 1950’s, researchers took note of something simple but significant: the human brain,

and brains in general, are exceptionally good at finding patterns in highly complex data, which

begged the question: what if the learning process of the human brain could be reconstructed

www.manaraa.com

5

mathematically? This led to the so-called “Neuron Hypothesis” and the invention of the perceptron

– the mathematical neuron – in 1958 by Frank Rosenblatt [21]. The perceptron, seen in Fig. 1.1,

then evolved into the neuron, which is simply a perceptron with a continuous output, and was

placed into networks with interconnecting lines by John Hopfield in 1982 – similar to how neurons

in brains are connected.

Machine learning researchers were able to take these neural networks and improve them over

the coming decades to the point where they could beat human beings at the most complicated

games we have ever played. The earliest major acomplishment, arguably, was passed when IBM’s

Deep Blue beat Kasparov at chess in 1998. Google DeepMind’s AlphaGo Master then beat Ke Jie,

the No. 1 Go player in the world, at Go in 2017. A particularly impressive fact about the game

Go, which yields testament to the level of intelligence required to play it well, is that there are

significantly more possible moves in Go then there are atoms in the observable universe; in fact,

there are approximately 10720 possible Go games for every atom in the observable universe [4].

These networks are so powerful they have permeated to nearly every aspect of our lives, from

driving our cars and tractors to populating our Facebook news feeds with stories they predict we

will find interesting.

Chapter 2 of this thesis will dive into some of the types, architectures, and training methods

of Artificial Neural Networks.

1.2 Motivation: Leveraging Neural Networks for Design Optimization

The motivation behind investigating the applications on neural networks for design opti-

mization algorithms is straightforward. Design Optimization algorithms can produce incredibly

desirable results from an engineering perspective, and the field itself still contains an enormous

amount of potential; however, the optimization problems these algorithms solve are highly non-

convex by nature and generally run in enormous variables spaces, subsequently creating massively

expensive problems to solve from a computational perspective. Neural networks, on the other hand,

are essentially extraordinarily powerful non-linear function generators; or, in other words, they are

www.manaraa.com

6

very good at fitting highly non-linear lines of best fit to any given data set. This poses a few

interesting possibilities:

Figure 1.2: High-Level Daigram of a Generative Adversarial Network, adopted from [1]

(1) Predicting Solution with No Iteration: a neural network, provided an adequate training set,

can learn the highly non-linear relationship between a design optimization problem (e.g.

the shape, boundary, and loading conditions) and its topologically optimal solution. In a

world where no computation limits existed and such a training set existed, this network

could predict topologically optimal solutions to arbitrary design problems in a matter of

seconds as opposed to days of high-performance computing time.

(2) Upscaling Solution Resolution: One of the largest factors in computation time of design

optimization problems is the mesh refinement level of the finite element problem which

runs in partnership with the optimization algorithm. The coarser the mesh, the faster the

algorithm yields a a sufficiently optimal result. A certain kind of artificial neural network,

a so-called Generative Adversarial Network (or GAN) seen in Figure 1.2, has the ability to

learn how to generate sufficiently convincing outputs as to make them nearly identical to

whatever “real” thing you are trying to get the network to learn to generate. The following

example explains how such a network works: there is a “Discriminator Network” which

is being trained to identify dog images from non-dog images and takes in two inputs, one

www.manaraa.com

7

from a training set of labeled examples of dog images and the other from the “Generator

Network,” which is learning to generate realistic pictures of dogs. The Discriminator and

Generator networks are then posed to play a “Min-Max” game with the cost function

of the Discriminator: the Generator Network is trying to maximize the cost/loss of the

Discriminator (by producing a realistic dog picture), and the Discriminator network is

trying to minimize its own cost/loss (by becoming better at recognizing real dogs). The way

the networks are posed puts them in competition, hence the “Adversarial” part of the name,

and the trained Generator Network can produce incredibly accurate images (images with

a high discriminator confusion rate). In the context of finite elements, such networks are

capable of learning what a solution from a highly refined mesh looks like (mathematically

speaking) and upscale the solution resolution of coarser meshes. Essentially, GAN’s take a

lower-resolution, computationally cheaper problem, and step up its final resolution, which

could save greatly on computation time.

(3) Predicting Solution Convergence: While similar to (1), this method seeks to make large or

small leaps through the solution space using the gradient of the solution field to inform its

prediction. Instead of starting with the boundary and loading specifications of the design

space, this problem setup lets the optimization algorithm provide it with a gradient field,

and then predicts what the solution field will look like a certain number of iteration down

the solution path. If the network is only predicting a few iterations ahead, the output of

the network would pass directly back into the optimization algorithm, which would run

several more iterations on the network’s guess before handing it off to the network to make

another incremental convergence prediction. Such a neural network could significantly

decrease computation time while minimizing the amount of “uninformed guessing” the

network in doing.

This thesis focuses exclusively on a neural network for (3) above, predicting solution conver-

gence of design optimization algorithms.

www.manaraa.com

8

1.3 Accomplishments

The research in this thesis has resulted in the following significant accomplishments:

(1) Three neural networks have been successfully trained to predict the solution convergence

of density-based topology optimization solvers.

(2) The performance data of each network have been collected to provide an understanding of

the general capabilities of such networks applied to the solution convergence problem.

(3) A novel convolutional neural network architecture – a hybrid inception encoder-decoder

network – has been proposed, tested, and found to outperform standard encoder-decoder

networks on the solution convergence problem.

1.4 Thesis Structure

Following this chapter, this thesis is laid out in the following manner:

(1) Theoretical Background: The mathematical theory behind density-based topology op-

timization is laid out, following by a higher-level description of the prerequisite machine

learning theory.

(2) Methodology: A description of each experiment is laid out, including an overview of

each network, its architecture, the data set used to train the network, and the training

parameters.

(3) Results and Discussion: The results of each experiment are shown with several figures

showcasing the prediction capabilities of the networks. The results are described, followed

by a discussion of the implications of the results.

(4) Conclusions and Future Work: The work of the thesis is summarized, and the areas of

interest for future work are laid out in the form of a list of research questions.

www.manaraa.com

Chapter 2

Theoretical Background

2.1 Topology Optimization

The simplest forms of structural topology optimization come in the form of ground structure

approaches for optimizing discrete truss structures. Such problems remove unnecessary bars from a

“ground structure” until no more bars can be removed without violating the constraints imposed in

the problem’s formulation. This thesis will not cover ground structure approaches, and instead will

focus on topology optimization of 2D continuum structures utilizing SIMP-based density methods.

The topology optimization problem we then seek to solve is as follows:

min
s

Z(u, s) (2.1)

subject to:

gk(u, s) ≤ 0 for k = 1, ...Ng (2.2)

hk(u, s) = 0 for k = 1, ...Nh (2.3)

where Z is the objective function, u is the state vector of the system, s is the vector of optimization

variables, gk are the inequality constraints of number Ng, and hk are the equality constraints of

number Nh. Note that there is an additionally bounding constraint on the optimization variables

si such that:

smini ≤ si ≤ smaxi

www.manaraa.com

10

Figure 2.1: Design domain for generation of data set.

The SIMP method, which will be described in detail shortly, utilizes elemental densities as the

optimization variable.

2.1.1 Geometry Description

In this thesis, the design domain of interest is a square continuum of isotropic, two-phase

material (solid, void) discretized by a 40x40 finite element mesh of 2D, square elements, as seen in

Figure 2.1.

2.1.2 SIMP Density Method

SIMP, which stands for Solid Isotropic Material with Penalization, is a density-based method

for solving relaxed, continuous topology optimization problems. Two phases are available to de-

scribe the material layout within the design domain: void and solid material. The optimization

variable s becomes the local element density ρ̄, which is defined as continuous over the element:

s = ρ̄, 0 < ρ̄ ≤ 1

To navigate around the trivial solution of a uniform material distribution throughout the

entire design domain, a volumetric or mass constrain is imposed upon the system. Assuming a

mass constraint, the optimization problem then looks as follows:

www.manaraa.com

11

min
ρ̄

Z(u, ρ̄) (2.4)

With mass constraint

h(ρ) =

∫
ρ dV − m̄ = 0 (2.5)

Where m̄ is a scalar value representing the maximum allowable mass of the system. The density

filter, which imposes changes elemental densities, is applied through the local element stiffness

matrix given by:

Ke
i = ρ̃ βe K

e
0 (2.6)

Where K0 is the initial elemental stiffness matrix and β is the penalization exponent (to be discussed

in detail below). Also above, we see that ρ̄ has turned suddenly into ρ̃. This ρ̃ represents the

linearly filtered elemental densities, which provides the algorithm with higher numerical stability

and prevents solution dependency on mesh refinement level. This filtered density ρ̃e is given by:

ρ̃ =

∑
wij ρ̄j∑
wij

(2.7)

Here, the filter weight terms, wij , are defined as:

wij = rf − |xi − xj | (2.8)

Where rf = 1.6× h (h is the side length of the elements composing the mesh) is the filter radius,

xi is the location of the current element, and xj is the location of the adjacent element. The factor

of 1.6 is chosen by convention.

The problem is initialized with intermediate densities and the density variables are then

iteratively updated and penalized for remaining intermediate using the density variable and the β

exponent, both seen in (2.6). Figure 2.2 on the following page illustrates the relationship between

normalized Young’s Modulus and density over several values of β.

www.manaraa.com

12

Figure 2.2: Beta power law material interpolation scheme

We see that as β → 1, the resulting curve converges on the Hashin-Shtrikman bound. This

figure begs the question, however: why not make β as large as possible? The answer lies in the value

of the gradient of the Young’s Modulus. As β →∞, the value of the gradient near ρ = 0 similarly

becomes zero and the value of the gradient near ρ = 1 approach infinity. This phenomena leads

to a non-convergent form of the material interpolation scheme. The optimal value, which provides

both sufficient penalization without extreme gradients, is chosen by convention to be β = 3.0.

2.1.3 Optimization Algorithms

Generally speaking, there are two classes of optimization algorithms: gradient based and

non-gradient based or gradient-free methods. Gradient-free methods tend to work well for topology

optimization problems where the optimization variable may only take discrete values. Gradient-free

methods include bound and branch methods, particle swarm methods, and evolutionary genetic

algorithms. Although these methods work decently well for discrete problems with a small number

of optimization variables, they tend to fall apart, so-to-speak, when there is a large number of opti-

www.manaraa.com

13

mization variables (as there often is in topology optimization problems) and when the optimization

variable is not bound to discrete values.

Gradient-based methods, as the name would imply, utilize the gradient of the system to find

an optimal solution, and work well with both large numbers of optimization variables and non-

discrete optimization variable values. Common gradient-based optimization algorithms include:

gradient descent, conjugate gradient, non-linear conjugate gradient, BFGS, and others. Within

gradient-based topology optimization, two optimization algorithms are commonly used, the latter

of which being the more robust and widely used algorithm: the Optimality Critera Method (OCM)

and the Globally Convergent Method of Moving Asymptotes (GCMMA). Generally speaking, these

gradient-based optimization algorithms require the continuity and first-order differentiability of the

objective and constraint functions.

2.1.3.1 Optimality Criteria Method (OCM)

The Optimality Criteria Method works well for density-based topology optimization prob-

lems, but tends only to converge when there is one constraint imposed on the system. A high level

description of the Optimality Criteria method is given as follows.

The optimization problem is:

min
s

Z(u, s) (2.9)

With mass constraint

h(s) = 0 (2.10)

Where the optimization algorithm is:

0. Initialize algorithmic parameters (damping factor, q, and move limit, m).

1. Initialize primal variable, s0, such that h(s0) = 0.

2. Set iteration count, n, to zero: n = 0.

www.manaraa.com

14

3. For n > 0, check convergence (i.e. check if |sn − sn−1| < ε|s0|).

4. Compute objective function and equality constraint partial derivatives, evaluated at the

previous iteration value of s, denoted sn:

δz

δsi

∣∣∣∣
sn
,
δh

δsi

∣∣∣∣
sn

(2.11)

5. Compute the Lagrange multiplier, ηn, using the bisection method such that h(s̃(η)) = 0:

s̃(η) =

max(sLi , s
n
i −m) sni [Bi(η)]q < max(sLi , s

n
i −m)

min(sUi , s
n
i +m) sni [Bi(η)]q > min(sLi , s

n
i +m)

sni Bi(η)q otherwise

where

B(η) =

−(δz/δsi)

∣∣∣∣
sn

η(δh/δsi)

∣∣∣∣
sn

(2.12)

6. The new value of the primal variable is calculated based on the η from step 5:

sn+1
i = sni [Bi(η

∗)]q (2.13)

7. Add one to iteration count (n = n+ 1) and go-to step 3.

2.1.3.2 Dual Algorithm

Sequential programming optimization methods, such as GCMMA, split the optimization

problem into sequential, separable convex approximations which are then solved using using a dual

or primal-dual method. As such, it is necessary to give some background into dual algorithms

along with GCMMA, which will be discussed in the following subsection. The general optimization

www.manaraa.com

15

problem formulation can be given as follows: Find s such that:

min
s
z(s) (2.14)

Subject to:

gj ≤ 0 j = 1, ..., Njg (2.15)

s ∈ S = {si ∈ R | sLi ≤ si ≤ sUi , i = 1, ..., Ns} (2.16)

This formulation is then solved with a Dual Algorithm, where, with the utilization of a

Lagrange function, the problem is formulated as:

max
γ

(min
s
L(s, γ)) (2.17)

Subject to:

γj ≥ 0 j = 1, ..., Ng (2.18)

Given that the minimization problem is computational intensive, we employ an approximation at

some s(n):

min
s

L(s, γ) = φ(γ) ≈ φ̃(γ) = min
s
L̃(n)(s, γ) (2.19)

where L̃(n)(s, γ) is the local approximation such that:

• The problem formulation is globally convex (which guarantees a unique solution)

• The formulation is separable:

L̃(n)(s, γ) =
∑
i

L̃
(n)
i (si, γ) (2.20)

• The formulation is analytic such that the minimization problem

min
si

L̃
(n)
i , sLi ≤ si ≤ sUi (2.21)

has a unique solution.

www.manaraa.com

16

We have two possible approximations for the Lagrange function, Lai . Since the approximated

Lagrange function should be convex, the approximation is selected based on the derivative of the

objective and constraint with respect to the optimization variable: ∂z/∂si and ∂gj/∂si, respectively.

Let b = {z, gi}; then, the approximation scheme is given by:

b̃
(n)
j = bj(s

(n)) +

(∂b/∂si)

∣∣∣∣
s(n)

(si − s(n)
n), if (∂b/∂si) ≥ 0

−(s
(n)
i)2(∂b/∂si)

∣∣∣∣
s(n)

((1/si)− (1/s
(n)
i)), if (∂b/∂si) < 0

(2.22)

This is the so-called ”hybrid-convex approximation,” with which we approximate a parabola as

a hyberbola at all points with a negative slope and as a line at all points with a positive slope.

This approximation scheme guarantees convexity of the formulation. The approximated Lagrange

function is then given by:

L̃
(n)
i (s, γ) = pzisi +

qzi
si

+
∑
j

γj(pjisi +
qji
si

) (2.23)

And:

φ̃(n) =
∑
i

min L̃
(n)
i +

∑
j

γjwj (2.24)

Where:

wj = gj(s
(n))−

∑
i

pjis
(n)
i +

qji

s
(n)
i

(2.25)

pji =

(∂gj/∂si)

∣∣∣∣
s(n)

, if (∂gji/∂si) < 0

0, otherwise

(2.26)

qji =

−(s

(n)
i)2(∂gj/∂si)

∣∣∣∣
s(n)

, if (∂gj/∂si) < 0

0, otherwise

(2.27)

The objective coefficients pzi and qzi are produced similarly to those above.

www.manaraa.com

17

Note that the solution of the minimization problem minsi L̃
(n)
i for a given γ is given analyti-

cally as:

s∗i =

√
qzi +

∑
j γjqji

pzi +
∑

j γjpji
, if sLi ≤ s∗i ≤ sUi (2.28)

This provides us with three solution scenarios:

1. If both partials evaluated at the end points are negative, that is

(∂L̃
(n)
i /∂si)

∣∣∣∣
sLi

< 0 and (∂L̃
(n)
i /∂si)

∣∣∣∣
sUi

< 0 (2.29)

(the approximated Lagrange function is monotonically decreasing) then s∗i = sUi .

2. Conversely, if both partials evaluated at the end points are positive,

(∂L̃
(n)
i /∂si)

∣∣∣∣
sLi

> 0 and (∂L̃
(n)
i /∂si)

∣∣∣∣
sUi

> 0 (2.30)

(the approximated Lagrange function is monotonically increasing)then s∗i = sLi .

3. If the partials are different in sign such that

(∂L̃
(n)
i /∂si)

∣∣∣∣
sLi

< 0 and (∂L̃
(n)
i /∂si)

∣∣∣∣
sUi

> 0 (2.31)

(the approximated Lagrange function has a unique minimum in the boundary that is not

the boundaries themselves) then the solution is given by Eqn. (20).

With s∗i (γ) known, we turn to evaluate:

φ̃(n)(γ) = γTw +
∑
i

L̃i(s
∗
i , γ) (2.32)

Which is solved numerically using a Non-Linear Programming (NLP) method.

www.manaraa.com

18

2.1.3.3 Method of Moving Asymptotes (MMA)

Recall that our dual formulation leads to the following approximations for the objective and

the constraint:

za = wz +
∑
i

(
pzi

(ui − si)
+

qzi
(si − li)

)
(2.33)

gaj = wj +
∑
i

(
pji

(ui − si)
+

qji
(si − li)

)
(2.34)

The approximated Lagrange function is built as the sum of the objective and constraint approxi-

mations:

La = za +
∑
j

γjg
a
j (2.35)

= (wz +
∑
j

γjwj) +
∑
i

(
pzi +

∑
j γjpji

ui − si
+
qzi +

∑
j γjqji

si − li

)
(2.36)

= w̃ +
∑
i

Lai (2.37)

Where:

wz = z(ŝ)−
∑
i

(
pzi

ui − ŝi
+

qzi
ŝi − li

)
(2.38)

in which (2.39)

pzi =

(∂z/∂si)

∣∣∣∣
ŝi

(ui − ŝi)2, if (∂z/∂si) > 0

0, otherwise

(2.40)

qzi =

−(∂z/∂si)

∣∣∣∣
ŝi

(ŝi − li)2, if (∂z/∂si) < 0

0, otherwise

(2.41)

www.manaraa.com

19

The expression for wj , pji, and qji are constructed similarly. From here, we can say:

Lai =
p̃i

ui − si
+

q̃i
si − li

(2.42)

Where:

p̃i = pzi +
∑
j

γjpji and q̃i = qzi +
∑
j

γjqji (2.43)

The solution to the minimization problem, just as stated in the dual formulation, can be

solved analytically. Setting the partial of the approximated Lagrange function with respect to the

optimization variable equal to zero and solving for si, we find:

si =
p̃ili − q̃iui ± (ui − pi)

√
p̃iq̃i

p̃i − q̃i
(2.44)

Only the positive case need be considered implying:

s∗i = s+
i =

p̃ili − q̃iui + (ui − pi)
√
p̃iq̃i

p̃i − q̃i
(2.45)

Using the simplifications p̂i =
√
p̃i and q̂i =

√
q̃i, this expression reduces to:

s∗i =
p̂ili + uiq̂

p̂i + q̂i
(2.46)

As stated in the dual algorithm formulation, we also check the signs of the derivative of the approx-

imated Lagrange function at the upper and lower bounds to determine which of the three possible

solutions is the solution for the given iteration.

Now, the further the upper and lower bound asymptotes are apart, the smaller the curvature

of the approximated Lagrange function and the larger the search space. To control the overall

convergence, the upper and lower bound asymptote locations are adjusted: the distance between

the two is reduced if oscillations in convergence are observed, and the distance between the two is

expanded for monotonic convergence. While k = {0, 1}:

www.manaraa.com

20

l
(k)
i = s

(k)
i − µa(s

U
i − sLi) (2.47)

u
(k)
i = s

(k)
i + µa(s

U
i − sLi) (2.48)

Where l
(k)
i and u

(k)
i are the location of the lower and upper asymptotes for a given iteration k,

respectively. If (s
(k)
i − s

(k−1)
i)(s

(k−1)
i − s(k−2)

i) < 0, then:

l
(k)
i = s

(k)
i − µb(s

(k−1)
i − l(k−1)

i) (2.49)

u
(k)
i = s

(k)
i + µb(u

(k−1)
i − s(k−1)

i) (2.50)

Otherwise:

l
(k)
i = s

(k)
i −

1

µb
(s

(k−1)
i − l(k−1)

i) (2.51)

u
(k)
i = s

(k)
i +

1

µb
(u

(k−1)
i − s(k−1)

i) (2.52)

2.1.4 Sensitivity Analysis

When using a gradient-based optimization algorithm, such as OCM or GCMMA, it is neces-

sary to provide the optimization algorithm gradients of the objective and constraints with respect

to the optimization variables. Methods for doing this include the finite difference method, the

direct method, and the adjoint method. Due to the numerical inefficiency of the finite difference

method, the adjoint method is the method of sensitivity analysis utilized in this thesis, and in most

linearly elastic strain energy-based topology optimization problems.

Consider the following minimization problem:

min
s
z(s,u) (2.53)

www.manaraa.com

21

Subject to:

gj ≤ 0 j = 1, ..., Njg (2.54)

s ∈ S = {si ∈ R | sLi ≤ si ≤ sUi , i = 1, ..., Ns} (2.55)

Differentiating the objective function z(s,u) utilizing the chain rule yields the following ex-

pression:

dz(s,u)

dsi
=
∂z

∂si
+
∂z

∂u

du

dsi
(2.56)

The last term – the derivative of the state vector with respect to the optimization variable – is then

solved by differentiating the residual of the governing equation, denoted by R:

dR(s,u)

dsi
=
∂R

∂si
+
∂R

∂u

du

dsi
= 0 (2.57)

Where by definition:

∂R

∂u
= K (2.58)

Solving Equation (2.57) for du/dsi and plugging the results back into Equation (2.56), we

arrive at the so-called adjoint solution:

dz(s,u)

dsi
=
∂z

∂si
− a
(∂R
∂u

)
(2.59)

Where a is found from solving the linear system referred to as the adjoint problem:

KTa =
∂z

∂u
(2.60)

It is evident from examining the above equations that the adjoint problem need only be solved

once for each objective and constraint function. For problems with a large number of optimization

variables, the adjoint problem is the most computationally efficient problem to solve to compute

the system sensitivities.

www.manaraa.com

22

2.2 Artificial Neural Networks

As a term, machine learning encompasses a wide range of extraordinarily powerful and robust

algorithms for establishing analytical models from given data sets. These models are then capable

of making high-accuracy ”decisions” – probabilistically speaking – with little or no need for human

intervention. Artificial neural networks are but one algorithm encapsulated by the larger field of

machine learning, but contain within them an enormous amount of potential as they are arguably

the most powerful known algorithm for developing highly complex non-linear models. Motivated

by the brain’s profound ability for finding patterns and establishing models of its environment,

neural networks are a mathematical representation of how the brain discover patterns and develop

models.

The mathematical foundation of neural networks is found in a very simple mathematical

problem: regression. Univariate examples of regression include problems such as:

(1) Housing Prices: find the relationship between house price and the square footage of the

house.

(2) Profit Prediction: find the relationship between the profit of a business and the population

size that the business serves.

Multivariate extensions of these examples would be:

(1) Housing Prices: find the relationship between house price and square footage, number of

rooms, location, number of bathrooms, local school rating, etc.

(2) Profit Prediction: find the relationship between the profit of a business and the population

size the business serves, the age of product consumers, the average income of product

consumers, consumer demographics, etc.

Clearly the univariate problems are simple and do not provide extraordinarily useful infor-

mation while the multivariate problems are significantly more complex and providing more useful

www.manaraa.com

23

information. The regression problem here, in a simplistic sense, is what each neuron of a neural

network is performing on a data set. Prior to diving into the theory of regression, consider the

following list of notation and conventions:

• Let the term training set refer to the data of known inputs and outputs, or x, y pairs, from

which the algorithm learns.

• Let the term hypothesis refer to the function, or prediction, computed by the algorithm

which represents the learned relationship between the x’s and y′s in the training set.

• Let ŷ represent the hypothesis.

• Let m denote the number of training examples in the training set.

• Let X represent a vector containing the known x-values of the training set.

• Let Y represent a vector containing the known y-values of the training set.

• Let (x(i), y(i)) represent the ith training example in the training set.

• Let θ represent the vector of weights or model parameters that the algorithm is computing

such that:

Y = θTX (2.61)

If the hypothesis is linear, linear algebra allows us to compute an analytical solution given

by the Least Squares or Normal Equation:

θ = (XTX)−1XTY (2.62)

Should the problem be sufficiently large, such as when the parameter space is massive and

the number of times the normal equation must be solved is also large, this method becomes com-

putationally costly. Additionally, this equation only provides a linear hypothesis, and – generally

speaking – most problems of interest in regression are not problems that require computing a linear

www.manaraa.com

24

model. Where then do we proceed? The answer is simple: iterative optimization. Continuing our

notation primer:

• Let L represent the cost or loss function of the optimization problem.

The optimization problem we then seek to solve can be defined as follows:

min
θ
L(θ) (2.63)

The primary loss function used in neural networks development or deep learning is the mean squared

error function, which is given by the following:

L(θ) =
1

2m

m∑
i

(
ŷ(x(i))− y(i)

)2
(2.64)

The most widely used algorithm for solving this optimization problem is gradient descent and its

variations: stochastic gradient descent, ADAM, etc. Gradient descent is a trivial optimization

algorithm, and the details of these algorithms will not be discussed in this thesis. One problem

that arises in any regression problem is the problem of underfitting and overfitting, or bias and

variance as the two are referred to as in machine learning literature, respectively. The solution to

preventing bias is to include more parameters in the model, and the solution to variance is referred

to as regularization. Essentially, regularization methods add a term into the cost/loss function

which increases (thus increasing the cost) as the magnitude of the weights learned by the algorithm

increase, which corresponds with high variance. Several methods of regularization exist, one of the

common being “L2 Regularization,” which is seen as the last term in the following modified form

of equation (2.64):

L(θ) =
1

2m

m∑
i

(
ŷ(x(i))− y(i)

)2
+
λ

m
||W ||22 (2.65)

An important aspect of training these algorithms, which is the blanket term used to describe

solving the optimization problem, is that the training set is typically broken down into multiple

subsets:

www.manaraa.com

25

(1) Training Set: A large portion of the original training set (60% or more) is used to train the

algorithm.

(2) Development or Validation Set: A smaller chunk of the original training set (20% or less)

is taken to asses model prediction accuracy. The Dev set informs the model, and the model

parameters are tweaked until high accuracy on the Deve set is achieved.

(3) Test Set: Another small chunk of the original training set (20% or less) is taken to quantify

the general accuracy of the model. This data set does not inform the model.

The motivation behind splitting up the training set comes from reasoning over how to quantify and

increase the accuracy of machine learning algorithms. Further information on Train/Dev/Test sets

is left to the reader to explore.

To arrive at the mathematical theory of neural networks, however, we must take regression

into the realm of classification, which is the name given to logistic regression algorithms with an

enforced decision boundary that forces the prediction into one or more discrete categories. The

simplest classification problems are so-called binary classification problems, such as:

(1) Tumor Classification: is the tumor in a medical image malignant or benign?

(2) Atmospheric Feature Classification: is there a polar mesospheric cloud in this data set or

not?

Somewhat unlike univariate regression problems, these simple binary classification problems

have significant areas of application. Complex, or multi-class classification problems include:

(1) Number/Letter Classification: Is this hand written number 0, 1, 2, ..., 999, or 1000? Is this

hand written letter A, a, B, b, C, c, ..., or z?

(2) Car Eyesight Classification: Is this a stop sign? Is this a pedestrian? Is this a dog? Is this

a green light, yellow light, or red light?

www.manaraa.com

26

As an interesting aside, multi-class classification is what our brains do incredibly well, even

to the point where what we value in a particular instance determines how we classify an object

in our environment. For example, if a person is walking through the forest and they see a cave,

they may classify the cave as just a cave; however, if that same person is running from something

in the forest that same cave may now become classified as a “bad/good place to hide.” Although

seemingly trivial, this value-based classification ability is a demonstration of profoundly complex

intelligence.

The alternative name for classification, as mentioned earlier, is logistic regression. This name

is informative as it alludes to the process by which regression algorithms become classification

problems: classification is possible when the regression model is passed through the logistic equa-

tion. The logistic equation, or Sigmoid function, is a non-linear function which intakes the model

parameters and inputs, and returns a probability. It is given by the following:

σ(x(i)) =
1

1 + e−θT x
(i)

(2.66)

A decision boundary is imposed on the output probability, which forces the output into a discrete

category, represented by integer values. This output is the hypothesis of the classification algorithm.

ŷ(x(i)) < 0.5, y(i) → 0 (2.67)

ŷ(x(i)) ≥ 0.5, y(i) → 1 (2.68)

www.manaraa.com

27

Similar to the standard regression algorithm, classification problems are solved as optimiza-

tion problems using gradient descent with the following loss function, the so-called cross-entropy

loss function:

L(θ) = − 1

m

m∑
i

[
y(i)log(ŷ(x(i))) + (1− y(i))log(1− ŷ(x(i)))

]
(2.69)

If one were to plot the two terms in the above loss function, it would be evident that this function

is strictly convex, thus guaranteeing a unique solution to the optimization problem characterizing

classification problems:

min
θ
− 1

m

m∑
i

[
y(i)log(ŷ(x(i))) + (1− y(i))log(1− ŷ(x(i)))

]
(2.70)

We now have arrived at the point of departure into the mathematical foundations of standard

artificial neural networks, the understanding of which is necessary for subsequent material on more

complex neural networks such as the encoder-decoder convolutional networks used in this thesis.

The quantitative desire for neural network algorithms is motivated by the following question:

what if the hypothesis we are trying to learn is highly non-linear? For example, to make compute

a regression model predicting what is being seen in the image captured by a 1000x1000 pixel color

image would require a model parameter space of over 3 billion parameters. This represents a color

image taken by a 1 megapixel camera, which is – by today’s standard – pathetic resolution. How

then, do we deal with the size of these problems? The answer: neural networks, which can solve

these problems accurately in significantly smaller model parameter spaces.

On the highest level, what a neuron does is take in an input, perform some kind of processing,

and produce a corresponding output, as seen in Figure 2.3.

www.manaraa.com

28

Figure 2.3: High level description of the functioning of a neuron.

The mathematical equivalent of this neuron is then given by the following:

Figure 2.4: High level description of a mathematical neuron, the “perceptron,” with hθ representing
the hypothesis, denoted ŷ elsewhere in this thesis, and g() representing the sigmoid or logistic
function.

These neurons are then assembled into network architectures, as seen in Figure 2.4. At

this point, conceptual understanding of what the network architecture is actually performing is

crucial to understanding why the neural network architecture is so effective at learning complex

hypotheses. Each neuron in the input layer, that is the first layer from left to right, is running

a logistic regression optimization problem to create a hypothesis from the input data set. In

order to accomplish this effectively, the network needs to be randomly initialized. In terms of

multivariate calculus, the first layer of the network is receiving as its input a non-linear parameter

space with as many dimensions as there are model parameters or weights for that layer, and each

neuron is running gradient descent to find a single minima of the surface created by plotting the

cost function against each model parameter. With random initialization, each neuron is hopefully

www.manaraa.com

29

arriving at a different minima of this function, which is in essence what is giving these networks

the ability, initially, to recognize many patterns within a data set. The subsequent layers are then

establishing the relationship between the outputs of the neuron layer before it, and running the

same optimization problem – finding the minima of their cost functions plotted against the outputs

of the previous layer. In actuality, the network is only performing one cost function calculation,

but the algorithms with which the network is trained, which will be discussed shortly, allow each

layer of weights in the network to understand how much they are contributing to the overall cost

of the network.

Figure 2.5: Standard Artificial Neural network architecture, a multi-layer “perceptron”, with ŷ(Θ)
representing the hypothesis of the network.

In the context of computer vision and convolutional networks, what these layers of the net-

works are learning is capable of being visualized. The first layers learn the simplest patterns

recognizable: straight lines at different angles. The second layer combines the straight lines from

the first layer to identify the next-most complex pattern in the image, such as curved lines. The fol-

lowing layer learns to identify more complex patterns in the image that can be built out of straight

and curved lines. The following layer may then learn to recognize complex objects composed of

the patterns learned by the previous layer. This example motivates the importance of the depth

of neural networks and the subsequent buzzword “deep learning.” On a computational level, depth

is also advantageous: a deep network actually has a significantly smaller problem to solve than a

www.manaraa.com

30

shallow network. This is a profoundly interesting phenomena, indicating that the geometry of a

network is significantly more important than the shear number of neurons.

A high-level description of the training process is given as follows. A network is trained

through a combination of two mathematical “passes” through the architecture. The so-called

Forward Propagation pass is the first step in training, where an input training example is fed

into the network, and the network produces an initial hypothesis. This hypothesis is compared

with the known output, yielding the initial cost. This cost is then utilized in the second pass

through the network, the so-called Back Propagation pass, which calculates the partial derivative

of the loss function with respect to each weight of the network. The weights of each layer are then

adjusted within the gradient descent algorithm using the partial derivative information from the

back propagation pass. This process of forward propagation and back propagation is then repeated

for each training example in the training set, resulting in a “trained network.” For example, if a

network is being trained to recognize handwritten digits 0-9, the training set would be composed

of, say, 10,000 examples of handwritten digits for each number 0-9. The network would be running

forward propagation and back propagation on each of the 10,000 training examples for each number

0-9 as it adjusts the weights to maximize its ability to recognize the digits (minimizing the number

of times it predicts incorrectly).

Excellent in-depth, quantitative explanations of the training algorithms are widely available

online, and the mathematical details of training are left to the reader to explore if they wish.

The final preliminary mathematical notions of importance are that of activation functions

and bias. The sigmoid or logistic function is but one of a wide range of non-linear functions which

have a two fold purpose: they give a value representing the so-called activation of a neuron, and they

transform the neuron’s linear model prediction onto a non-linear function. If neurons did not use

a non-linear activation function, the neural network would simply be a computationally expensive

linear regression algorithm. With respect to the first listed purpose of activation functions – on the

highest level, a neuron’s level of activation corresponds to the magnitude of the numerical value

inside of it. If the activation function is the logistic function, the neuron activates to a number

www.manaraa.com

31

between 0 and 1: the number 0 denotes no activation, and 1 denotes full activation. The tanh

function has been explored as a scaled version of the sigmoid function that is centered around

zero, but the most widely used activation functions in deep learning today are the variations of the

so-called Rectified Linear Unit (ReLU) functions. The standard ReLU is defined by the following

function:

ReLU(x) = max{0, x} (2.71)

The ReLU function yields a few desirable behaviors. The function is non-linear, but it has

a linear slope for positive activation values, unlike the sigmoid or tanh functions, whose gradient

approaches zero at their extremes. This behavior of sigmoid or tanh activation functions lead to

the “vanishing gradient” problem, in which the gradient calculations during training converge to

zero, resulting in an overall convergence failure of the network. Due to its linearity for positive

x-values, the ReLU function does not suffer from the problem of vanishing gradients, and provides

substantially higher convergence rates than the sigmoid or tanh functions. The ReLU function

also maps all negative activation values to zero, resulting in a network behavior called “sparse

activation,” in which only the positively activated neurons show non-zero activation for any given

input. An important note is that the ReLU function does not provide an output which is useful

in a probablistic sense. As such, ReLU activations are only used in the interior or “hidden”

layers of a network, and the sigmoid or the softmax (sigmoid for multiple outputs) activations are

conventionally used in the output layer of deep networks.

Recall that bias is the second and final important notion behind neural networks. The bias,

denoted by a vector of scalar values b, regulate the magnitude of activation of a neuron to encourage

confidence. The prediction of a network with the bias term added in looks as follows:

ŷ = σ(θTX + b) (2.72)

Let us explore a quick example to understand the importance of the bias term. Consider a

computer vision problem in which a particular neuron has converged on small curved lines as its

learned feature. If the first term θTX yields a value of 12, a bias term of say, -11, will “encourage”

www.manaraa.com

32

the neuron to be more confident in its prediction by biasing its output to a lower value. Consider

the following example which the activation of two neurons, one with an unbiased prediction of 12

and one with an unbiased prediction of 22, are compared with and without a bias of -11:

ŷ = σ(12) = 0.999 (2.73)

ŷ = σ(12− 11) = 0.73 (2.74)

ŷ = σ(22) = 0.999 (2.75)

ŷ = σ(22− 11) = 0.999 (2.76)

We see from the above example that the bias term leaves the confident neurons highly ac-

tivated, while reducing the activation of what may be described as “intermediately” confident

neurons.

2.2.1 Convolutional Neural Networks (ConvNets)

Convolutional neural networks, or ConvNets as they are called in short, are a modified version

of the standard neural network discussed in the previous section, and they present a highly desirable

potential for solving numerically massive problems. Let us explore the workings of ConvNets to

illuminate why this is the case.

Consider the problem of computer vision in which we seek to identify features in a 9x9 pixel

grayscale image. The input to the network is a 9x9 matrix of pixel brightness values, as seen in

Figure 2.6:

www.manaraa.com

33

Figure 2.6: Matrix representation of pixel brightness values, which serve as the input to a convo-

lution layer.

Now, we “convolve” (note that this is very close to, but not technically speaking the same

operation as a standard mathematical convolution) this input with a “filter” of arbitrary size; let’s

choose 3x3 for the sake of simplicity, seen in Figure 2.7:

Figure 2.7: Input matrix convolution with filter of size 3x3.

The convolution step is an element-wise product-sum, yielding the following matrix for the

first step:

www.manaraa.com

34

Figure 2.8: First convolution step.

The next step:

Figure 2.9: Second convolution step.

This process of stepping through the input matrix product-summing it’s elements is contin-

ued, resulting in the following completed convolution:

www.manaraa.com

35

Figure 2.10: Completed Convolution.

What we have done here, in essence, is take the 81 element input matrix and represent it

as an inverse convolution operation between the a filter matrix and the resulting output matrix.

Here, we start to see the beginnings of convolution’s potential for reducing data size by modifying

the way in which it is represented.

Now, a convolutional neural network takes this convolution operation and tries to learn

the filter matrix element values; in other words, the entries of the filter matrix are the model

parameters. Consider now that the filter, or weight matrices, are represented by w, where w is

a matrix of weight values wij . The problem the convolutional network is seeking to solve is to

optimize the value of each wij such that the output cost of the whole network is minimized, as seen

in Figure 2.11. An interesting side note is that the example filter given above is one of the possible

filters for recognizing vertical lines in images.

Here is where we can see the advantage of a ConvNet for numerically massive problems, such

as those seen in computer vision. Consider the problem where we seek to recognize features in

a RBG color input image of size 1000x1000 pixels – a 1 Megapixel color image. This problem’s

input is now no longer a single matrix, but rather three matrices concatenated side by side into

a 3-dimensional array, where each “slice” or “channel” – as they are called in ConvNet literature

www.manaraa.com

36

– represents the pixel brightness for each of the 3 pixel types (R, B, G). This problem then has

1000×1000×3 = 3 million input numbers. Let’s say that we run this problem through a single layer

ConvNet which has 10 filters, each of size 15x15, and 10 subsequent biases. The ConvNet then has

15× 15× 10 + 10 = 2, 260 model parameters to learn. Notice that the number of model parameters

in a ConvNet is actually independent of the input size. Now consider a standard neural network

with one layer put to the same task. Let’s assume this network has a single layer of 500 neurons

and subsequently 1 bias term. This network then has 500× (1000× 1000× 3) + 1 = 1, 500, 000, 001

model parameters to learn. We see here that the convolutional network, due to its unique abilities

to reduce data size, is uniquely posed to tackle numerically large problems.

As an interesting aside, and as a testament to the miraculous power of the human brain (and

brains in general), note that the human eye sees in both color and grayscale (cone and rod cells)

with a resolution of approximately 525 megapixels. That leads to an input “matrix” to the optical

region of your brain of approximately 525000000 × 3 ≈ 1.75 billion “numbers” or unique nerve

signals. Your brain then processes all of this approximately 30 times per second, and is capable

of cross-referencing real-time visual data with your optical memory to identify millions of unique

features in your environment within milliseconds.

Figure 2.11: High-level description of ConvNet algorithm, which seeks to find optimal values of the

filter matrix elements wij such that the ouput cost of the network is minimized.

www.manaraa.com

37

To build a more complex ConvNet, this process of convolving a matrix with a filter is simply

layered and then usually passed through one small standard neural network to classify the output.

This final standard neural network is referred to as a ”fully-connected” or FC layer in ConvNet

literature.

Within a ConvNet, there are also multiple types of layers which serve to perform several

useful functions, such as to further reduce the number of learned parameters. A “pooling layer”

looks at a region of it’s input and performs a simple operation to reduce that region to a single

number. For example, a 3x3 “Maxpool” layer looks at a 3x3 region of its input matrix and outputs

the largest value from that region.

As an example of a what a deep ConvNet looks like, consider the following image of the

famous “LeNet-5” ConvNet [3], which is trained to recognize hand-written digits:

Figure 2.12: LeNet-5 [3], a deep convolutional network for recognizing handwritten digits.

www.manaraa.com

38

2.2.1.1 Encoder-Decoder ConvNets

Encoder-Decoder Networks are a special ConvNet architecture which poses a very useful set

of capabilites. To understand what an encoder-decoder network is and what kinds of capabilities

they possess, let us go through an example of computer vision and discuss where each element –

encoding and decoding – exercise their respective utility.

Consider the problem of training a convolutional network to learn how to recognize features

in the image obtained from the cameras on a self-driving car. This network needs to learn how to

take an input image and determine whether there are pedestrians, cars, buses, stop signs, lights,

or other combinations several hundred other objects pertinent to driving located in the image. A

convolutional architecture similar to that of LeNet-5 discussed in the previous section possesses the

ability to recognize and classify objects in the image – it can say in a binary fashion, with a certain

probability, that there either is or is not one or more of the objects it knows to recognize located

in the image. This information, while necessary, is not sufficient to actually drive a car, however.

Although the network has learned to recognize that there is indeed an object within the image, it

provides absolutely no information as to where in the image that object is. In some sense, we can

say that this ConvNet has encoded the feature information contained within the original image into

a significantly size-reduced representation (i.e. its output prediction).

This begs the question: is it possible to take the encoded information about the objects found

in the image and decode that information to find out where in the original image that object is

located? In a more abstract sense, can we take the encoded information, combine it with data we

have previously computed to generate an output containing useful information? The answer, of

course, is yes. The “decoder” half of the encoder-decoder network acts like the original ConvNet in

reverse: it takes the encoded data and, like pooling in reverse, “upsamples” the encoded data by

combining it with data from the corresponding layer of the encoder half of the network. The decoder

repeats this process, resulting in a reconstruction of the original image that contains the information

about the objects contained within it. Figure 2.13 provides an example of this architecture:

www.manaraa.com

39

Figure 2.13: Encoder-Decoder Network Architecture for Road-Scene Feature Recognition [29]

In Figure 2.13, we see that the information from the pooling layers is carried across into the

upsampling layer of the decoder, resulting in a output image from the network that contains the

features recognized by the network, denoted by the different color regions. The problem type that

this network is formulated to solve in this example is a so-called “Image Segmentation” problem.

As a side note, Encoder-Decoder networks are, in some sense, Generative Adversarial Net-

works (GANs) with the generator network and the discriminator network taking each other’s usual

location, respectively. The specific machinery of GANs will not be discussed in this thesis.

It should be noted that Encoder-Decoder networks have many powerful applications beyond

the given computer vision example, such as those in the field of Natural Language Processing (NLP)

with Recurrent Neural Networks (RNN’s), which will not be discussed in this thesis. In this thesis,

an encoder-decoder network is used to generate convergence predictions of topology optimization

problems by taking in image-based representations of the solution gradient and treating the problem

as an image segmentation task.

2.2.1.2 Inception Networks

Recall from the discussion of ConvNets that their filter size is independent of the input

size. There is a certain amount of ”hand-waving” that goes into the construction of a network

architecture – where we have selected to have a filter of size 5x5, we may also have chosen to select

a filter of size 3x3, or 9x9, or a pooling layer. The reasoning behind having a certain filter size is

www.manaraa.com

40

motivated from a defining characteristic of most feature segmentation problems that convolutional

networks are applied to: the salient features in a training set vary in size, location, and orientation,

and some filter sizes are better for recognizing features of a certain size.

Given that each filters/layers provide their own distinct benefit when learning features in

the input data, the following question becomes particularly interesting: why can’t the architecture

do them all? This is the motivating question behind the so-called “Inception Network.” Inception

networks perform several different operations on a single output from a given layer of the network

and then concatenates the result from each operation into a new output. This method was pioneered

by researchers from Google’s DeepMind in [28]. Repeating these inception layers has been shown

to have a powerful regularization effect on the network, leading to a network architecture which

generally outperforms standard ConvNet architectures. An inception layer from Google’s first

inception network [28] is seen in the Figure 2.14.

Figure 2.14: Inception Module from the GoogleNet inception network, adapted from [28].

www.manaraa.com

Chapter 3

Methodology

With the prerequisite mathematical machinery sufficiently explained, we are now equipped

to dive into the core research of this thesis, which is motivated by the following question: is it

possible to use the “universal function approximation” capabilities of neural networks to predict

the convergence of topology optimization solutions? In other words, is it possible to input early

iterations of a topology optimization solution into a neural network and have it make accurate

predictions as to what the solution space will look like at a further point in the convergence

process?

The first experiment is to verify the results of Sosnovik and Oseledets (2017) [25] with a slight

modification of the network presented in their work. The second experiment is to test a modified

version of the network of experiment 1. Finally, the third experiment is to run the same problem

through a novel network architecture: an inception encoder-decoder network. The results of the

networks are then compared to determine which method provides a higher binary accuracy, and

also to investigate the effects of the inception architecture on encoder-decoder-based segmentation

problems.

3.1 Experiment 1: Sosnovik-Oseledets Network Reproduction

3.1.1 Overview

As the subsection title would suggest, this was a rather straightforward attempt to construct

the same network as Sosnovik and Oseledets and achieve similar levels of accuracy, but using a

www.manaraa.com

42

Keras-based implementation without resorting explicitly to TensorFlow.

3.1.2 Architecture

The convolutional network implemented by Sosnovik and Oseledets is an encoder-decoder

convolutional network posed to solve the SIMP-based topology optimization convergence prediction

problem by posing it as an image segmentation task. The input of this network is a two channel

image, both grayscale, with the first being the explicit result of the topology optimization algorithm

and the second being a gradient field computed by subtracting the densities of the aforementioned

iteration with the densities of the previous iteration. Letting Xin,i denote the ith channel of the

input for a given training example, we have:

Xin,1 = Xn (3.1)

Xin,2 = Xn −Xn−1 (3.2)

The encoder-decoder network is constructed such that the output image from the network,

after passing through an activation layer, is a grayscale density image with the same resolution as

the input image that serves as the networks convergence prediction. Figure 3.1 shows the structure

of this network. The network is composed of 6 convolutional layers, each with a filter size of 3x3

and fed into a ReLU activation function. The first two layers have 16 filters, the second two layers

have 32 filters, and the final two layers have 64 filters. Two dropout layers (left to the reader to

research) are included to regularize the network.

www.manaraa.com

43

Figure 3.1: Encoder-Decoder network from Sosnovik and Oseledets (2017) [25].

The decoder section of the network reverses the encoder section, Upsampling where the

encoder performed Maxpooling, and ending with a single filter that passes through a sigmoid

activation function to yield the final prediction. The network architecture requires the input image

be constructed such that the height and width are divisible by 4, and poses a parameter space of

192,113 parameters to learn.

3.1.3 Dataset

Sosnovik and Oseledets used the open source SIMP-based Topology Optimization software

Topy (developed by [14]) to generate an initial set of 10,000 training examples for the network. Each

training example in the training set contains 100 iterations from the Topy solver, yielding a total

dataset with approximately 40,000 100-iteration training examples after rotating and reflecting

each image.

www.manaraa.com

44

3.1.4 Training Parameters

Optimizer Adam

Loss Function Binary Cross Entropy

Accuracy Metric Binary Accuracy

Number of Training Examples, m 40,000

Training Epochs 15

Validation Split 0.05

Batch Size 10

Input Size (40, 40, 2)

Table 3.1: Experiment 1 Network Training Parameters

3.2 Experiment 2: Sosnovik et al Network with Modified Input

3.2.1 Overview

This experiment implements the same network as Sosnovik and Oseledets shown in Figure

3.1, but trained with a 3-channel input with the hypothesis that it will yield a higher prediction

accuracy from the network.

The reasoning behind inputting three iterations as opposed to one iteration and its gradient

is that the additional input information may allow the network to make a more informed prediction.

Additionally, the network now has the potential to learn the gradient from the density differences

between the three inputs. Variations in the input, such as two or three iterations and their respective

gradients is certainly a topic for further research.

3.2.2 Architecture

The input to the network has been slightly modified from that which is presented by Sosnovik

and Oseledets, who input the two channel grayscale image described above. In this experiment,

the input is modified to be a 3 channel grayscale image with each channel being an early iteration

in the optimization process, specifically iterations 2, 4, and 6. A nuance of the network is that the

inputs must also be organized in ascending order as listed below:

www.manaraa.com

45

Xin, 1 = X2 (3.3)

Xin, 2 = X4 (3.4)

Xin, 3 = X6 (3.5)

The reasoning behind selecting these particular iterations is somewhat arbitrary. Some uni-

form criteria is needed for selecting the input to the network, and the question motivating the

research is focused around whether the network can “look” at the early results from the topology

optimization algorithm and predict where the solution space is headed. As such, these specific

iterations were selected as the criteria since that results in the data set converged.

The network architecture is seen in Figure 3.2

Figure 3.2: Modified Encoder-Decoder network from Sosnovik and Oseledets (2017) [25].

3.2.3 Dataset

The dataset used to train this network is identical to that of Experiment 1.

www.manaraa.com

46
Optimizer Adam

Loss Function Binary Cross Entropy

Accuracy Metric Binary Accuracy

Number of Training Examples, m 40,000

Training Epochs 15

Validation Split 0.05

Batch Size 10

Input Size (40, 40, 3)

Table 3.2: Experiment 2 Network Training Parameters

3.2.4 Training Parameters

3.3 Experiment 3: Inception-Based Encoder-Decoder Network

3.3.1 Overview

The Inception-based encoder-decoder network is a novel network architecture implemented in

this thesis to explore whether the benefits of inception networks transfer when inserted as elements

of encoder-decoder networks. The reasoning behind formulating this architecture was two-fold:

(1) Well-made inception networks generally outperform standard convolutional networks when

applied to the same problem. This motivates the following question: can inception encoder-

decoder networks outperform standard encoder-decoder networks when applied to the same

problem?

(2) Curiosity: Is it even possible to hybridize these networks? What unique challenges, if any,

does this novel network architecture pose? If this network architecture appears to be more

successful at predicting solution convergence, what tweaks can be made to the architecture

to further increase the accuracy?

3.3.2 Architecture

The inception-based encoder-decoder network, as the name would imply, is a hybrid cross-

over between a standard encoder-decoder network – as presented in the previous section – and an

www.manaraa.com

47

inception network. A graphical representation of the network is seen in Figure 3.3.

Figure 3.3: Hybrid Inception Encoder-Decoder network architecture.

www.manaraa.com

48

The architecture of the inception module is identical to the inception module with expanded

filter banks presented by Christian Szegedy et al in [27], seen in Figure 3.4.

Figure 3.4: Inception Module adopted from [27].

Notice that the left-most tower and the tower directly next to it contain a rather strange

convolution, that being the parallel 3x1 and 1x3 convolutions. The research done by Szegedy et al

determine that two parallel 3x1 and 1x3 convolutions were actually more computationally efficient

than a single 3x3 convolution. An additional nuance of this inception module is the stacked 3x3

to 3x1 and 1x3 convolutions of the left-most tower. This structure has replaced a single 5x5

convolution for the same reason as was mentioned above – Szegedy et al determined it was more

computationally efficient than a single 5x5 convolution.

3.3.3 Dataset

The dataset used in this experiment is identical to that of Experiment 1.

www.manaraa.com

49

3.3.4 Training Parameters

Optimizer Adam

Loss Function Binary Cross Entropy

Accuracy Metric Binary Accuracy

Number of Training Examples, m 40,000

Training Epochs 15

Validation Split 0.05

Batch Size 10

Input Size (40, 40, 3)

Table 3.3: Experiment 3 Network Training Parameters

www.manaraa.com

Chapter 4

Results and Discussion

4.1 Experiment 1: Sosnovik et al Network Reproduction

4.1.1 Training Results

Consider the following two figures:

Figure 4.1: Training and Validation Loss of the Encoder-Decoder Network of Sosnovik et al.

www.manaraa.com

51

Figure 4.2: Training and Validation Binary Accuracy of the Encoder-Decoder Network of Sosnovik

et al.

Figure 4.1 shows the cross-entropy loss and Figure 4.2 shows the binary accuracy of the

network detailed in Experiment 1. Notice that the validation curves are beginning to plateau while

the training set data continues to decrease. This behavior is indicative of one of two things: (1)

the network is over-fitting the training set and consequently has a lower generalization accuracy,

or (2) the network architecture is not optimally suited to solving this problem. This aspect of the

networks performance was neglected in the results published by Sosnovik et al, and suggests this

network is only capable of achieving a binary accuracy of greater than 99% – as published in [25]

– on the training set.

This makes a great example as to the necessity of validation and test sets when analyzing a

network’s performance – the binary accuracy of the network on the training set is not the metric

www.manaraa.com

52

with which to analyze its capabilities. Based on the figures above, the test accuracy can be predicted

to stagnate below 96%, which is still indicative of a high-performing network, but not as high as

reported by Sosnovik et al in [25].

4.1.2 Predictions

Figure 4.3: Network Prediction vs. Optimization Solver Solution for given input.

Figure 4.3 shows the prediction of the network alongside the solution from the topology

optimization solver for a given set of inputs. The figure shows that, at least to the eye, the network

does a fairly good job of making predictions, but seems to exhibit one particularly undesirable

behavior: when the input to the network still contains intermittent densities, the network fails

to resolve these regions in a way that eliminates certain members. Consider the example in the

lower-left corner of the figure: this figure has a small member in the top of the image which is

subsequently removed by the optimization solver, but which remains present in the prediction

made by the network. The network also seems to struggle to resolve the image for when the inputs

are higher in intermediate densities.

www.manaraa.com

53

4.2 Experiment 2: Sosnovik et al Network with Modified Input

4.2.1 Training Results

Figure 4.4: Training and Validation Cross-Entropy Loss of the Encoder-Decoder Network of Sos-

novik et al.

www.manaraa.com

54

Figure 4.5: Training and Validation Binary Accuracy of the Encoder-Decoder Network of Sosnovik

et al.

Figure 4.7 shows the cross-entropy loss and Figure 4.8 shows the binary accuracy of the

network detailed in Experiment 2. The validation curve in both figures indicate that the modified

input does not prevent the network from over-fitting the training set, and the behavior is some-

what consistent with that of the network in Experiment 1. It should be noted, however, that the

validation accuracy of this network actually seems to be increasing slightly – at least over the given

training epochs – indicating that it is over-fitting the data less than the network of experiment

1. This information permits a preliminary prediction that the network performs better with a

3-Channel input than with a 2-Channel input.

www.manaraa.com

55

4.2.2 Predictions

Figure 4.6: Network Prediction vs. Optimization Solver Solution for given input.

Figure 4.6 shows a collection of predictions from the network alongside the solution from the

topology optimization solver for a given set of inputs. A very interesting difference between the

results shown here and the results shown in Figure 4.3 is that this network does seem to resolve

areas of intermediate density in a way that is consistent with the optimization solver. To see this,

consider the example shown in the bottom-left of the figure.

www.manaraa.com

56

4.3 Experiment 3: Inception Encoder-Decoder Network

4.3.1 Training Results

Figure 4.7: Training and Validation Cross-Entropy Loss of the Inception Encoder-Decoder Network.

www.manaraa.com

57

Figure 4.8: Training and Validation Binary Accuracy of the Inception Encoder-Decoder Network.

Figure 4.7 shows the cross-entropy loss and Figure 4.8 shows the binary accuracy of the

Inception network detailed in Experiment 3. These figures present some very interesting behavior,

namely that the validation curves seem to be steadily moving in the direction of the training curves.

This is indicating that the inception network is fitting the data better (low over-fitting) than the

networks of experiments 1 or 2. Figure 4.8 also indicates that the network achieves the highest

accuracy of all 3 networks. The combination of high accuracy and low over-fitting permit the

prediction that the inception network performs better than the other two networks.

www.manaraa.com

58

4.3.2 Predictions

Figure 4.9: Network Prediction vs. Optimization Solver Solution for given input.

Figure 4.9 shows a collection of predictions from the inception network alongside the solution

from the topology optimization solver for a given set of inputs. Similar to the network of experiment

2, it is apparent that the inception network seems to resolves intermediate density features, albeit

slightly less well. An interesting aspect of the results to note is that this network structure seems

to carry more of the intermediate densities into its final prediction – there’s more “fuzziness” in the

prediction. This is likely due to the fact that the encoding section of the network is retaining much

more information about the inputs than the other two networks and is passing that information to

the decoder for the prediction.

www.manaraa.com

59

4.4 Experiment Comparison

Figure 4.10: Training Accuracy Comparison.

Figure 4.11: Training Loss Comparison.

www.manaraa.com

60

Figures 4.10 and 4.11 show the training accuracy and loss of all 3 experiments, respectively.

Notice that the network of experiment 2, denoted EDN 3-Channel in the legend, outperforms the

other networks in terms of accuracy and loss. Recall, however, that performance on the training

set is not a good indicator of which network generalizes the best to new data.

Figure 4.12: Validation Accuracy Comparison.

www.manaraa.com

61

Figure 4.13: Validation Loss Comparison.

Figures 4.12 and 4.13 show the validation accuracy and loss of all 3 experiments, respectively.

Note that both the inception network and the 3-Channel network show improved validation set

performance, and both seem to continue to increase in accuracy throughout the given training

epochs, whereas the validation accuracy of the 2-Channel network seems to stagnate.

www.manaraa.com

62

Figure 4.14: Test Accuracy Comparison.

Figure 4.14 shows the test set accuracy of the three networks, and serves to confirm the

predictions made earlier about the overall performance of the networks. The 2-Channel network

of Experiment 1 performs the worst out of all the networks, likely due to its over-fitting of the

training data set. It is evident that simply by adding a third channel to the input, the network

architecture of Sosnovik et al increases considerably in generalized accuracy.

Finally, the inception network outperformed all the networks on the test set, and based on its

validation set metrics, can be predicted to continue to outperform the 3-channel network through

further training epochs.

www.manaraa.com

63

4.5 Discussion of Results

There are several important take-aways from the results of experiments detailed above:

(1) Validation Sets: It is of utmost importance to include information from the validation

and test set when analyzing a network’s performance. The failure to do so may deceive a

researcher, scientist, or engineer using such a network into thinking it is performing at a

much higher level than it actually is.

One should also be careful not to use information from the test set to analyze the gen-

eralization accuracy of the network when a validation set is not being used. Ideally, the

validation set is used to inform the hyperparameters of the network, resulting in iterative

changes to the network until optimal accuracy is achieved on the validation set. Only then

does the test set provide insight into the generalized accuracy of the network. To put it

simply, the test set should never inform the network, less it cease to perform the functions

of a test set.

(2) Network Comparison: The 3-channel input provides notable performance improvements

across all domains of interest when compared with the 2-channel input: it achieves a

lower loss and higher accuracy on the training set, is less prone to overfitting the data

set, and yields a higher accuracy on the test set. The inception network performs the

highest of the network architectures presented, achieving the highest test set accuracy

while demonstrating the best fit to the training data set. It should be noted that the

inception network did have more learning parameters than the other two networks: the

encoder-decoder architecture of experiments 1 and 2 contained 192,257 parameters and

the inception network contained 223,985 – a 116.5% increase. That begs the question:

could that be the reason why the inception network performed better than the 3-Channel

encoder-decoder network? To some extent, yes; however, blindly adding more parameters to

a network will in fact make the overfitting problem worse – the issue of overfitting is rather

solved through regularization techniques and modifications to the network architecture.

www.manaraa.com

64

With that said, it is expected that the inception network – because of its superior fitting

behavior – would continue to outperform the 3-Channel encoder-decoder network even if

they had the same number of parameters.

(3) Applications to Topology Optimization: The set of experiments confirms that encoder-

decoder neural networks, posed to solve a segmentation problem, are capable of predicting

topologically optimal solution convergence with a binary accuracy greater than 96%. The

results clearly show, however, that the results from the networks contain regions of interme-

diate density and floating members that have rightfully been removed by the optimization

solver. As such, these networks are not well-posed to “predict solutions,” but rather to

“predict solution convergence.” These networks could greatly enhance the performance of

topology optimization solvers if used to perform “leaps” through the solution space. Con-

sider, for example, a solver algorithm which runs a few iterations of the topology optimiza-

tion solver, feeds a selection of the early iterations into a convergence prediction network,

passes the prediction from the network back into the optimization solver, lets the solver

run several iterations, and then repeats the process. In this case, the “fuzzy” predictions

of the network would be advantageous: they represent areas where the network has a lower

prediction confidence and would hence allow these low-confidence regions to be solved by

the mechanically-informed optimization solver.

www.manaraa.com

Chapter 5

Conclusions and Future Work

5.1 Summary of Completed Work

In this thesis, the motivation for applying the universal function generation capabilities of

neural networks to problems in topology optimization was laid out: neural networks contain the

potential to learn the complex non-linear relationships between a design space and its topologically

optimal solution, thus presenting a benefit of lowering the computational cost of solving such

problems. A background of the mathematical theory behind the topology optimization solver was

laid out, followed by a surface-level crash-course in the theory of neural networks.

The motivation was combined with the theory to pose a series of experiments: one which

sought to investigate and validate the results of a previous research experiment; one which sought

to investigate a hypothesis that modifying the input structure of the same network could improve

its performance; and another which posed a novel hybrid Inception Encoder-Decoder network

architecture to test and compare against the previous networks on the same segmentation problem.

The experiments were successfully carried out, demonstrating that the 3-Channel modified

input successfully increased the performance of then network, both in terms of test set accuracy

and the quality of the fit to the training data, and that the novel inception encoder-decoder network

performed superior to the standard encoder-decoder network architectures.

www.manaraa.com

66

5.2 Unanswered Questions and Future Research

The research in this thesis posed several interesting questions for further research:

(1) What modifications (regularization, architecture modifications, additional layers, etc.) to

the standard and inception-based encoder-decoder networks increase their performance?

(2) What other problems is the inception encoder-decoder network posed to solve well?

(3) What are differences between what the inception encoder-decoder network is learning versus

what the standard encoder-decoder network is learning?

(4) What are the limitations that the inception network runs into, given its current architec-

ture?

(5) How do these networks perform when the solution they are attempting to predict is inter-

mediate? To explain by example, how do they perform if applied to a problem which takes

a GCMMA density-based solver 2500 iterations to solve, tasked with taking iterations 20,

22, and 24 as inputs to predict what the solution space will look like at iteration 50?

(6) Is it possible to make the network “mechanically informed?” In other words, rather than

just looking at elemental density values, can information about the stress, strain energy

density, etc., be passed into the network to make more physics-based predictions? If so, how

do the predictions of such networks compare to the predictions of the networks outlined in

this thesis?

(7) How do these networks perform when applied to 3-dimensional problems?

(8) Can the networks be applied convolutionally to larger problems? To explain once more by

example, consider a network which has been trained on 40x40 element regions. Can this

network make “regional predictions” if applied convolutionally to a problem with a mesh

size of 1600x1600 elements?

www.manaraa.com

67

(9) Can these networks be applied to other computationally intensive problems of physical and

engineering interest, such as turbulence or fluid-structure interactions?

(10) Can recurrent network models be used to solve the solution convergence problem? How

do they compare to the performance of encoder-decoder networks when applied to this

problem?

(11) Can these networks be used for problems where the solution space converges with abrupt

or non-linear changes in material distribution?

(12) Can recurrent or sequential neural network models be used to solve this problem? What

are the benefits and costs of using an encoder-decoder versus a sequential network?

www.manaraa.com

Bibliography

[1] A Beginner’s Guide to Generative Adversarial Networks (GANs). http://skymind.ai/wiki/
generative-adversarial-network-gan. Accessed: 2019-04-01.

[2] History of Machine Learning. https://www.doc.ic.ac.uk/ jce317/history-machine

-learning.html. Accessed: 2019-03-29.

[3] MNIST Demos on Yann LeCun’s website. http://yann.lecun.com/exdb/lenet/. Accessed:
2019-04-05.

[4] Number of Possible Go Games at Sensei’s Library. https://senseis.xmp.net/

?NumberOfPossibleGoGames. Accessed: 2019-04-01.

[5] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation. arXiv:1511.00561 [cs], November 2015.
arXiv: 1511.00561.

[6] Martin P Bendsøe. Optimal shape design as a material distribution problem. Structural
optimization, 1(4):193–202, 1989.

[7] Martin P Bendsøe and Ole Sigmund. Topology optimization by distribution of isotropic ma-
terial. In Topology Optimization, pages 1–69. Springer, 2004.

[8] Martin Philip Bendsøe and Noboru Kikuchi. Generating optimal topologies in structural design
using a homogenization method. Computer methods in applied mechanics and engineering,
71(2):197–224, 1988.

[9] Adit Deshpande. The 9 Deep Learning Papers You Need To Know
About (Understanding CNNs Part 3). https://adeshpande3.github.io/

The-9-Deep-Learning-Papers-You-Need-To-Know-About.html. Accessed: 2019-04-06.

[10] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 1440–1448, 2015.

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 580–587, 2014.

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

http://skymind.ai/wiki/generative-adversarial-network-gan
http://skymind.ai/wiki/generative-adversarial-network-gan
http://yann.lecun.com/exdb/lenet/
https://senseis.xmp.net/?NumberOfPossibleGoGames
https://senseis.xmp.net/?NumberOfPossibleGoGames
https://adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
https://adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

www.manaraa.com

69

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[14] William Hunter. Predominantly solid-void three-dimensional topology optimisation using open
source software. PhD thesis, Stellenbosch: University of Stellenbosch, 2009.

[15] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In
Advances in neural information processing systems, pages 2017–2025, 2015.

[16] Yoonsik Kim, Insung Hwang, and Nam Ik Cho. A New Convolutional Network-in-Network
Structure and Its Applications in Skin Detection, Semantic Segmentation, and Artifact Re-
duction. arXiv:1701.06190 [cs], January 2017. arXiv: 1701.06190.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[18] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional Networks for Se-
mantic Segmentation. page 10.

[19] Bernard Marr. A Short History of Machine Learning – Every Manager Should Read.
https://www.forbes.com/sites/bernardmarr/2016/02/19/a-short-history-of-machine

-learning-every-manager-should-read/. Accessed: 2019-03-29.

[20] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

[21] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organi-
zation in the brain. Psychological review, 65(6):386, 1958.

[22] Sagar Sharma. What the Hell is Perceptron? https://towardsdatascience.com/

what-the-hell-is-perceptron-626217814f53, September 2017.

[23] Thalles Silva. An intuitive introduction to Generative Adversarial Networks (GANs).
https://medium.freecodecamp.org/an-intuitive-introduction-to-generative

-adversarial-networks-gans-7a2264a81394, January 2018. Accessed: 2019-04-01.

[24] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[25] Ivan Sosnovik and Ivan Oseledets. Neural networks for topology optimization.
arXiv:1709.09578 [cs, math], September 2017. arXiv: 1709.09578.

[26] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[27] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818–2826, 2016.

https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53

www.manaraa.com

70

[28] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
pages 1–9, June 2015.

[29] Robail Yasrab, Naijie Gu, and Xiaoci Zhang. An encoder-decoder based convolution neural
network (cnn) for future advanced driver assistance system (adas). Applied Sciences, 7(4):312,
2017.

[30] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833. Springer, 2014.

[31] Ke Zhang, Miao Sun, Tony X Han, Xingfang Yuan, Liru Guo, and Tao Liu. Residual networks
of residual networks: Multilevel residual networks. IEEE Transactions on Circuits and Systems
for Video Technology, 28(6):1303–1314, 2018.

	University of Colorado, Boulder
	CU Scholar
	Spring 1-1-2019

	Standard and Inception-Based Encoder-Decoder Neural Networks for Predicting the Solution Convergence of Design Optimization Algorithms
	Nathanial James O'Neill
	Recommended Citation

	Introduction
	Overview
	Topology Optimization and Manufacturing
	Machine Learning and Neural Networks

	Motivation: Leveraging Neural Networks for Design Optimization
	Accomplishments
	Thesis Structure

	Theoretical Background
	Topology Optimization
	Geometry Description
	SIMP Density Method
	Optimization Algorithms
	Sensitivity Analysis

	Artificial Neural Networks
	Convolutional Neural Networks (ConvNets)

	Methodology
	Experiment 1: Sosnovik-Oseledets Network Reproduction
	Overview
	Architecture
	Dataset
	Training Parameters

	Experiment 2: Sosnovik et al Network with Modified Input
	Overview
	Architecture
	Dataset
	Training Parameters

	Experiment 3: Inception-Based Encoder-Decoder Network
	Overview
	Architecture
	Dataset
	Training Parameters

	Results and Discussion
	Experiment 1: Sosnovik et al Network Reproduction
	Training Results
	Predictions

	Experiment 2: Sosnovik et al Network with Modified Input
	Training Results
	Predictions

	Experiment 3: Inception Encoder-Decoder Network
	Training Results
	Predictions

	Experiment Comparison
	Discussion of Results

	Conclusions and Future Work
	Summary of Completed Work
	Unanswered Questions and Future Research

	 Bibliography

